
Symbol Table Management
Prof. James L. Frankel

Harvard University

Version of 6:38 PM 26-Sep-2023
Copyright © 2023, 2022, 2020, 2015 James L. Frankel. All rights reserved.

Symbol Tables in Our Implementation

• A symbol table is a data structure that associates each identifier with
its type and other information

• Contains all user-declared identifiers

• Associated with each identifier is a type data structure
• The type data structure is of the form shown in the Type Checking slides

• Every reference to an identifier in the parse tree should be replaced
with a pointer to the appropriate entry in the applicable symbol table

2

Symbol Table for each Overloading Class

• All possible C overloading classes are shown in Table 4-2 in §4.2.4 on page 78

• For our language, we have:
• Statement labels (different from case labels)
• Other names

• For a full C implementation, there are three more overloading classes:
• Preprocessor macro names
• Structure, union, and enumeration tags

• These always follows the reserved words struct, union, or enum

• Component names (referred to as “members” in Standard C)
• These have a name space within each specific struct or union

• Their declarations are always within a struct or union and they may only be used following either . or ->

3

Symbol Table at each Scope

• Symbol tables for statement labels exist at each procedure scope

• Symbol tables for other names exist at:
• File scope
• Each procedure scope (same as the outermost block scope within a function)
• Each block scope

• Please note that formal parameter names in a function definition are in the
same symbol table as the other names in the outermost block of a function
(see §4.2.2)
• “In Standard C, the scope of formal parameter declarations in a function definition is

the same as the scope of identifiers declared at the beginning of the block that forms
the function body.”

4

Symbol Table Inward Linkage

• A global pointer should exist that points to the file-scope other-names symbol table

• All global variables and procedures should be present in the file-scope other-names symbol table

• Associated with each non-function global variable is a type data structure

• Associated with each function global variable is:
• a type data structure that specifies the type of the function’s return value
• a type data structure that specifies the number of parameters and type of each parameter
• a pointer to the function’s statement-label symbol table
• a pointer to the function’s outermost-block other-names symbol table (which contains the names and types of all of the

function’s parameters and the names and types of all of the function’s outermost block variables)
• a pointer to the AST for the body of the function

• Associated with each block (with the exception of the outermost block in a function) is a block-scope other-
names symbol table

• Associated with each procedure is a procedure-scope other-names symbol table
• Each entry in a block-scope or procedure-scope symbol table has an identifier name and a type

5

Symbol Table Outward Linkage

• Each block-scope symbol table should have a pointer to the
innermost enclosing block-scope’s or function-scope’s symbol table
• This allows searching for the declaration of a referenced identifier in the

innermost block scope or function scope
• After searching through block and function scopes, a final search through the

file-scope symbol table would be conducted

• The file-scope symbol table is not linked through the outward
pointers because the instructions needed to access file-scope
variables are different from the instructions needed to access block-
scope and function-scope variables

6

Example of Symbol Tables

• Go over symbolTables.c

7

	Slide 1: Symbol Table Management
	Slide 2: Symbol Tables in Our Implementation
	Slide 3: Symbol Table for each Overloading Class
	Slide 4: Symbol Table at each Scope
	Slide 5: Symbol Table Inward Linkage
	Slide 6: Symbol Table Outward Linkage
	Slide 7: Example of Symbol Tables

